Global synchronization for delayed complex networks with randomly occurring nonlinearities and multiple stochastic disturbances

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42135101
(http://iopscience.iop.org/1751-8121/42/13/135101)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.153
The article was downloaded on 03/06/2010 at 07:34

Please note that terms and conditions apply.

Global synchronization for delayed complex networks with randomly occurring nonlinearities and multiple stochastic disturbances

Yao Wang ${ }^{1}$, Zidong Wang ${ }^{1,2,4}$ and Jinling Liang ${ }^{3}$
${ }^{1}$ School of Information Sciences and Technology, Donghua University, Shanghai 200051, People's Republic of China
${ }^{2}$ Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
${ }^{3}$ Department of Mathematics, Southeast University, Nanjing 210096, People's Republic of China
E-mail: Zidong.Wang@brunel.ac.uk

Received 5 October 2008, in final form 2 January 2009
Published 9 March 2009
Online at stacks.iop.org/JPhysA/42/135101

Abstract

This paper is concerned with the synchronization problem for a new class of continuous time delayed complex networks with stochastic nonlinearities (randomly occurring nonlinearities), interval time-varying delays, unbounded distributed delays as well as multiple stochastic disturbances. The stochastic nonlinearities and multiple stochastic disturbances are investigated here in order to reflect more realistic dynamical behaviors of the complex networks that are affected by the noisy environment. By utilizing a new matrix functional with the idea of partitioning the lower bound \hbar_{1} of the time-varying delay, we employ the stochastic analysis techniques and the properties of the Kronecker product to establish delay-dependent synchronization criteria that ensure the globally asymptotically mean-square synchronization of the addressed stochastic delayed complex networks. The sufficient conditions obtained are in the form of linear matrix inequalities (LMIs) whose solutions can be readily solved by using the standard numerical software. A numerical example is exploited to show the applicability of the proposed results.

PACS numbers: 05.45.Xt, 89.75.-k, 02.50.-r, 02.30.Ks.
(Some figures in this article are in colour only in the electronic version)

[^0]
1. Introduction

In recent years, the studies of complex networks have been an active field of research in many scientific and technical disciplines $[1,5,6,14-16,26,31-33,38]$. Many systems in nature can be described by complex networks with examples including genetic networks, information networks, the Internet and social networks etc. Among much literature on analyzing complex networks, one of the most widely investigated dynamical behaviors of complex networks is the synchronization motion of its dynamical elements [$6,14,18,33,38$].

In practice, time delays are considered as ubiquitous in networks due to the fact that the information transmission within complex networks is in general not instantaneous since the signal's traveling speed is limited, and it is known that the time delays may cause undesirable dynamic network behaviors such as oscillation and instability. In addition, it is noted that continuously distributed delays, either bounded or unbounded [3, 19, 20, 22, 28], have received more attention since the complex network usually has a spatial nature due to the presence of parallel pathways with a variety of axon sizes and lengths. Recently, there has been a growing number of papers dealing with both discrete and distributed time delays, see e.g. [20, 3, 8, 19, 28] and the references therein.

In real-time systems, the signal transmission is usually a noisy process brought on by random fluctuations from probabilistic causes and, therefore, stochastic modeling has been of vital importance in many branches of science such as neurotransmitters and packet dropouts. It is often the case that the dynamical behaviors of complex networks are largely affected by the stochastic disturbances. Subsequently, the synchronization problem for stochastic networks has begun to receive some initial research interest. In [16, 17, 29, 33], the synchronization problems have been intensively investigated for delayed complex networks with various kinds of stochastic disturbances, where the criteria ensuring the synchronization among networks have been derived mainly based on the Lyapunov approach that is capable of coping with the different types of time delays.

In addition to the network-induced delay and external stochastic disturbances, 'random' phenomena often appear due to connections over communication channels, such as random communication delay, random measurements and random packet losses, which have recently attracted much attention in the networked control society. However, another interesting random phenomenon, random nonlinearity, has been largely overlooked. As is well known, a wide class of practical systems is influenced by additive nonlinear disturbances that are caused by environmental circumstances. For complex networks with communication constraints, such nonlinear disturbances themselves may be subject to random abrupt changes, which may result from abrupt phenomena such as random failures and repairs of the components, changes in the interconnections of subsystems, sudden environment changes, modification of the operating point of a linearized model of nonlinear systems, etc. In other words, the nonlinear disturbances may occur in a probabilistic way and are randomly changeable in terms of their types and/or intensity. The randomly occurring nonlinearities, also called stochastic nonlinearities, have recently received some interest in the literature. For example, in [37, 35], the filtering and control problems for discrete-time systems with stochastic nonlinearities have been thoroughly investigated. Unfortunately, to the best of the authors' knowledge, the synchronization problem for complex networks experiencing randomly occurring nonlinearities with or without time delays and stochastic disturbances has received very little attention, and the purpose of this paper is therefore to fill in such a gap.

Motivated by the above observations, in this paper, we aim to deal with the synchronization problem for stochastic delayed complex networks (SDCN) with stochastic nonlinearities, multiple stochastic disturbances, time-varying delays and continuously distributed delays. We
are interested in deriving sufficient conditions for the addressed problem by employing the properties of the Kronecker product [13] and the stochastic analysis techniques [2, 11, 24], combined with the 'delay fractioning' approach [25, 26, 33]. A novel matrix functional is constructed to attain new synchronization criteria, which are formulated in the form of linear matrix inequalities (LMIs) [4]. Note that the LMIs can be solved by using the standard numerical software.

The remainder of this paper is organized as follows. In section 2, a stochastic complex network model with mixed time delays, stochastic nonlinearities and multiple stochastic disturbances is proposed, and some preliminaries are briefly outlined. In section 3, by utilizing the approach of 'delay fractioning' and the matrix functional method, we conduct the stochastic analysis to obtain delay-dependent sufficient criteria in terms of LMIs so as to ensure that the considered SDCN with multiple stochastic disturbances and stochastic nonlinearities are globally synchronized in the mean square. In section 4, a numerical example is provided to show the applicability of the obtained results. The conclusions are finally drawn in section 5.

Notations. Throughout this paper, \mathbb{R}^{n} and $\mathbb{R}^{n \times m}$ denote, respectively, the n-dimensional Euclidean space and the set of all $n \times m$ real matrices. $P>0$ means that matrix P is real, symmetric and positive definite. I and 0 denote the identity matrix and the zero matrix with compatible dimensions, respectively; and $\operatorname{diag}\{\cdots\}$ stands for a block-diagonal matrix, $\operatorname{col}\{\cdots\}$ denotes a matrix column with blocks given by the matrices in $\{\cdots\}$. If A is a matrix, the notation $\lambda_{\max }(A)$ means the largest eigenvalue of A. The superscript ' T ' stands for matrix transposition and the asterisk ' $*$ ' in a matrix is used to represent the term which is induced by symmetry. The Kronecker product of matrices $Q \in \mathbb{R}^{m \times n}$ and $R \in \mathbb{R}^{p \times q}$ is a matrix in $\mathbb{R}^{m p \times n q}$ and denoted as $Q \otimes R$. We let $\mathcal{C}\left((-\infty, 0] ; \mathbb{R}^{n}\right)$ denote the family of continuous functions φ from $(-\infty, 0]$ to \mathbb{R}^{n} with the norm $|\varphi|=\sup _{-\infty \leqslant \theta \leqslant 0}\|\varphi(\theta)\|$, where $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^{n}. Moreover, let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geqslant 0}, P\right)$ be a complete probability space with a filtration $\left\{\mathcal{F}_{t}\right\}_{t \geqslant 0}$ satisfying the usual conditions (i.e., the filtration contains all P-null sets and is right continuous). Denote by $L_{\mathcal{F}_{0}}^{p}\left((-\infty, 0] ; \mathbb{R}^{n}\right)$ the family of all \mathcal{F}_{0}-measurable $\mathcal{C}\left((-\infty, 0] ; \mathbb{R}^{n}\right)$-valued random variables $\xi=\{\xi(\theta):-\infty<\theta \leqslant 0\}$ such that $\sup _{-\infty<\theta \leqslant 0} \mathbb{E}\left\{|\xi(\theta)|^{p}\right\}<\infty$, where $\mathbb{E}\{\cdot\}$ stands for the mathematical expectation operator with respect to the given probability measure P. Sometimes, the arguments of a function will be omitted in the analysis when no confusion arises.

2. Problem formulation and preliminaries

Consider the following array of delayed complex networks with multiple stochastic disturbances and stochastic nonlinearities:

$$
\begin{align*}
\mathrm{d} x_{i}(t)=\left[A x_{i}(t)\right. & +D x_{i}(t-\tau(t))+\delta(t) B_{1} f\left(x_{i}(t)\right)+(1-\delta(t)) B_{2} g\left(x_{i}(t)\right) \\
& \left.+C \int_{-\infty}^{t} \kappa(t-s) h\left(x_{i}(s)\right) \mathrm{d} s\right] \mathrm{d} t+\sum_{j=1}^{N} w_{i j}^{(1)} \Gamma_{1} x_{j}(t)\left(\mathrm{d} t+\mathrm{d} \omega_{1}(t)\right) \\
& +\sum_{j=1}^{N} w_{i j}^{(2)} \Gamma_{2} x_{j}(t-\tau(t))\left(\mathrm{d} t+\mathrm{d} \omega_{2}(t)\right) \\
& +\sigma_{i}\left(t, x_{i}(t), x_{i}(t-\tau(t))\right) \mathrm{d} \omega_{3}(t), \quad i=1,2, \ldots, N \tag{1}
\end{align*}
$$

where $x_{i}(t)=\operatorname{col}\left\{x_{i 1}(t), \ldots, x_{i n}(t)\right\} \in \mathbb{R}^{n}$ is the state vector of the i th network at time t; A, D, B_{1} and B_{2} are the known real constant matrices; $\Gamma_{1}, \Gamma_{2} \in \mathbb{R}^{n \times n}$ represent the inner-
coupling between the subsystems at time t and $t-\tau(t)$, respectively; $W^{(1)}=\left(w_{i j}^{(1)}\right)_{N \times N}$ and $W^{(2)}=\left(w_{i j}^{(2)}\right)_{N \times N}$ are the outer-coupling configuration matrices representing the coupling strength and the topological structure of the complex networks; furthermore, $\sigma_{i}(\cdot, \cdot, \cdot): \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the noise intensity function vector, and $\omega_{k}(t)(k=1,2,3)$ are mutually independent scalar Brownian motions defined on $(\Omega, \mathcal{F}, \mathcal{P})$ satisfying

$$
\begin{equation*}
\mathbb{E}\left\{\omega_{k}(t)\right\}=0 \quad \text { and } \quad \mathbb{E}\left\{\left[\omega_{k}(t)\right]^{2}\right\}=\mathrm{d} t \tag{2}
\end{equation*}
$$

Moreover, $\kappa(\cdot):[0,+\infty) \rightarrow[0,+\infty)$ is the distributed time-delay kernel; and the discrete time delay $\tau(t)$ is a time-varying differentiable function satisfying [9]:

$$
\begin{equation*}
0<\hbar_{1} \leqslant \tau(t) \leqslant \hbar_{2}, \quad \dot{\tau}(t) \leqslant \mu, \tag{3}
\end{equation*}
$$

where \hbar_{1}, \hbar_{2} and μ are constants. Finally, $f\left(x_{i}(t)\right)=\operatorname{col}\left\{f_{1}\left(x_{i 1}(t)\right), f_{2}\left(x_{i 2}(t)\right), \ldots\right.$, $\left.f_{n}\left(x_{i n}(t)\right)\right\}, g\left(x_{i}(t)\right)=\operatorname{col}\left\{g_{1}\left(x_{i 1}(t)\right), g_{2}\left(x_{i 2}(t)\right), \ldots, g_{n}\left(x_{i n}(t)\right)\right\} \quad$ and $\quad h\left(x_{i}(t)\right)=\operatorname{col}\left\{h_{1}\left(x_{i 1}\right.\right.$ $\left.(t)), h_{2}\left(x_{i 2}(t)\right), \ldots, h_{n}\left(x_{i n}(t)\right)\right\}$ are continuous nonlinear functions, and $\delta(t)$ is a stochastic variable that describes the following random events for the system (1):

$$
\begin{cases}\text { Event 1: the system }(1) \text { experiences the nonlinear function } f(\cdot), \tag{4}\\ \text { Event 2: } & \text { the system }(1) \text { experiences the nonlinear function } g(\cdot)\end{cases}
$$

Letting $\delta(t)$ be a Bernoulli distributed sequence defined by

$$
\delta(t)= \begin{cases}1: & \text { if Event } 1 \text { occurs, } \tag{5}\\ 0: & \text { if Event } 2 \text { occurs }\end{cases}
$$

it follows that $\delta(t)$ satisfies

$$
\begin{equation*}
\operatorname{Prob}\{\delta(t)=1\}=\mathbb{E}\{\delta(t)\}=\delta_{0}, \quad \operatorname{Prob}\{\delta(t)=0\}=1-\mathbb{E}\{\delta(t)\}=1-\delta_{0}, \tag{6}
\end{equation*}
$$

where the constant $\delta_{0} \in[0,1]$ reflects the occurrence probability of the event of the nonlinear functions $f(\cdot)$ and $g(\cdot)$. It is further assumed that the variables $\delta(t)$ and $\omega_{k}(t)(k=1,2,3)$ are mutually independent.

Remark 1. In this paper, the random variable $\delta(t)$ is used to model the probability distribution of the nonlinear functions. To our knowledge, this represents the first attempt to take into account the occurrence of different nonlinear functions in a probabilistic way for the addressed complex networks. In other words, in the complex network (1), the two terms $\delta(t) B_{1} f\left(x_{i}(t)\right)$ and $(1-\delta(t)) B_{2} g\left(x_{i}(t)\right)$ can be used to account for the binary switch between these two nonlinear functions according to the given probability distribution.

Remark 2. It follows from the given hypothesis that $\mathbb{E}\left\{\delta(t)-\delta_{0}\right\}=0$ and $\mathbb{E}\left\{\left(\delta(t)-\delta_{0}\right)^{2}\right\}=$ $\delta_{0}\left(1-\delta_{0}\right)$. As pointed out in [39], $\delta(t)$ is a Markovian process and, for the following use, it is assumed that $\delta(t)$ follows an unknown but exponential distribution of switchings.

Throughout this paper, the following assumptions are needed:
Assumption 1 [6]. The outer-coupling configuration matrices of the complex network (1) satisfy

$$
\begin{align*}
& w_{i j}^{(q)}=w_{j i}^{(q)} \geqslant 0 \quad(i \neq j), \\
& w_{i i}^{(q)}=-\sum_{j=1, j \neq i}^{N} w_{i j}^{(q)} \quad(q=1,2 ; i, j=1,2, \ldots, N) . \tag{7}
\end{align*}
$$

Assumption 2 [10]. For $\forall u, v \in \mathbb{R}^{n}$, the nonlinear functions $f(\cdot), g(\cdot), h(\cdot)$ satisfy the following sector-bounded conditions:

$$
\begin{align*}
& {\left[f(u)-f(v)-X_{1}(u-v)\right]^{T}\left[f(u)-f(v)-X_{2}(u-v)\right] \leqslant 0,} \tag{8}\\
& {\left[g(u)-g(v)-Y_{1}(u-v)\right]^{T}\left[g(u)-g(v)-Y_{2}(u-v)\right] \leqslant 0,} \tag{9}\\
& {\left[h(u)-h(v)-H_{1}(u-v)\right]^{T}\left[h(u)-h(v)-H_{2}(u-v)\right] \leqslant 0,} \tag{10}
\end{align*}
$$

where X_{1}, Y_{1}, H_{1} and X_{2}, Y_{2}, H_{2} are real constant matrices with $X_{2}-X_{1} \geqslant 0, Y_{2}-Y_{1} \geqslant 0$ and $H_{2}-H_{1} \geqslant 0$.

Remark 3. The nonlinear functions $f(\cdot), g(\cdot)$ and $h(\cdot)$ satisfying assumption 2 are said to belong to the sector $\left[X_{1}, X_{2}\right],\left[Y_{1}, Y_{2}\right]$ and $\left[H_{1}, H_{2}\right]$, respectively. Note that the sector-bounded nonlinearity of stochastic systems has been studied by [33, 34]. It should be pointed out that such a nonlinear condition is more general than the usual Lipschitz conditions that have been widely used in $[16,38]$.

Assumption 3 [20]. The distributed time-delay kernel $\kappa(\cdot):[0,+\infty) \rightarrow[0,+\infty)$ is continuous, integrable and also satisfies

$$
\begin{equation*}
\tilde{\kappa}=\int_{0}^{+\infty} \kappa(s) \mathrm{d} s<+\infty, \quad \breve{\kappa}=\int_{0}^{+\infty} s \kappa(s) \mathrm{d} s<+\infty . \tag{11}
\end{equation*}
$$

Assumption 4. The noise intensity function vector $\sigma_{i}: \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies the Lipschitz condition, i.e., there exist constant matrices Σ_{1} and Σ_{2} of appropriate dimensions such that the following inequality:

$$
\begin{gathered}
\left(\sigma_{i}\left(t, u_{1}, v_{1}\right)-\sigma_{j}\left(t, u_{2}, v_{2}\right)\right)^{T}\left(\sigma_{i}\left(t, u_{1}, v_{1}\right)-\sigma_{j}\left(t, u_{2}, v_{2}\right)\right) \\
\leqslant\left\|\Sigma_{1}\left(u_{1}-u_{2}\right)\right\|^{2}+\left\|\Sigma_{2}\left(v_{1}-v_{2}\right)\right\|^{2}
\end{gathered}
$$

holds for all $i, j=1,2, \ldots, N$ and $u_{1}, v_{1}, u_{2}, v_{2} \in \mathbb{R}^{n}$.
By utilizing the Kronecker product ' \otimes ' of matrices, the network system (1) can be written in a compact form as

$$
\begin{align*}
\mathrm{d} x(t)=\left[\left(I_{N} \otimes\right.\right. & \left.A+W^{(1)} \otimes \Gamma_{1}\right) x(t)+\left(I_{N} \otimes D+W^{(2)} \otimes \Gamma_{2}\right) x(t-\tau(t))+\delta(t)\left(I_{N} \otimes B_{1}\right) F(x(t)) \\
& \left.+(1-\delta(t))\left(I_{N} \otimes B_{2}\right) G(x(t))+\left(I_{N} \otimes C\right) \int_{-\infty}^{t} \kappa(t-s) H(x(s)) \mathrm{d} s\right] \mathrm{d} t \\
& +\left(W^{(1)} \otimes \Gamma_{1}\right) x(t) \mathrm{d} \omega_{1}(t)+\left(W^{(2)} \otimes \Gamma_{2}\right) x(t-\tau(t)) \mathrm{d} \omega_{2}(t) \\
& +\sigma(t, x(t), x(t-\tau(t))) \mathrm{d} \omega_{3}(t), \tag{12}
\end{align*}
$$

where
$x(t)=\operatorname{col}\left\{x_{1}(t), x_{2}(t), \ldots, x_{N}(t)\right\}$,
$F(x(t))=\operatorname{col}\left\{f\left(x_{1}(t)\right), f\left(x_{2}(t)\right), \ldots, f\left(x_{N}(t)\right)\right\}$,
$G(x(t))=\operatorname{col}\left\{g\left(x_{1}(t)\right), g\left(x_{2}(t)\right), \ldots, g\left(x_{N}(t)\right\}\right.$,
$H(x(t))=\operatorname{col}\left\{h\left(x_{1}(t)\right), h\left(x_{2}(t)\right), \ldots, h\left(x_{N}(t)\right)\right\}$,
$\sigma(t, x(t), x(t-\tau(t)))=\operatorname{col}\left\{\sigma_{1}\left(t, x_{1}(t), x_{1}(t-\tau(t))\right), \ldots, \sigma_{N}\left(t, x_{N}(t), x_{N}(t-\tau(t))\right)\right\}$.
Let the network (1) (or (12)) be supplemented with initial conditions of the form

$$
x_{i}(s)=\varphi_{i}(s) \in L_{\mathcal{F}_{0}}^{2}\left((-\infty, 0], \mathbb{R}^{n}\right), \quad i=1,2, \ldots, N
$$

in which $L_{\mathcal{F}_{0}}^{2}\left((-\infty, 0], \mathbb{R}^{n}\right)$ is the family of all \mathcal{F}_{0}-measurable $\mathcal{C}\left((-\infty, 0], \mathbb{R}^{n}\right)$-valued random variables which satisfy sup $-\infty \leqslant s \leqslant 0$ E $\left\{\left\|\varphi_{i}(s)\right\|^{2}\right\}<\infty[23,36]$.

Before stating the main results, a definition and some lemmas are introduced here.

Definition 1. The complex network (1) (or (12)) is said to be globally asymptotically synchronized in the mean square if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathbb{E}\left\{\left\|x_{i}\left(t, \varphi_{i}(s)\right)-x_{j}\left(t, \varphi_{j}(s)\right)\right\|^{2}\right\}=0 \tag{13}
\end{equation*}
$$

holds for any $i, j \in\{1,2, \ldots, N\}$.
Lemma 1 [13]. The Kronecker product has the following properties:
(1) $(\alpha A) \otimes B=A \otimes(\alpha B)$;
(2) $(A+B) \otimes C=A \otimes C+B \otimes C$;
(3) $(A \otimes B)(C \otimes D)=(A C) \otimes(B D)$;
(4) $(A \otimes B)^{T}=A^{T} \otimes B^{T}$.

Lemma 2 [3]. Given any real matrices $\Omega_{1}, \Omega_{2}, \Lambda$ of appropriate dimensions and a number $\varepsilon>0$ such that $\Lambda>0$, then the following inequality holds:

$$
\Omega_{1}^{T} \Omega_{2}+\Omega_{2}^{T} \Omega_{1} \leqslant \varepsilon \Omega_{1}^{T} \Lambda \Omega_{1}+\varepsilon^{-1} \Omega_{2}^{T} \Lambda^{-1} \Omega_{2} .
$$

Lemma 3. Let $\mathcal{U}=\left(\alpha_{i j}\right)_{N \times N}, P \in \mathbb{R}^{n \times n}, x=\operatorname{col}\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ where $x_{i}=$ $\operatorname{col}\left\{x_{i 1}, x_{i 2}, \ldots, x_{i n}\right\} \in \mathbb{R}^{n}$ and $y=\operatorname{col}\left\{y_{1}, y_{2}, \ldots, y_{N}\right\}$ where $y_{i}=\operatorname{col}\left\{y_{i 1}, y_{i 2}, \ldots, y_{i n}\right\} \in$ $\mathbb{R}^{n}(k=1,2, \ldots, N)$. If $\mathcal{U}=\mathcal{U}^{T}$ and each row sum of \mathcal{U} is zero, then

$$
x^{T}(\mathcal{U} \otimes P) y=-\sum_{1 \leqslant i<j \leqslant N} \alpha_{i j}\left(x_{i}-x_{j}\right)^{T} P\left(y_{i}-y_{j}\right) .
$$

Lemma 4 [20]. Let M be a positive semi-definite matrix, $\alpha(\cdot):(-\infty, a] \rightarrow[0,+\infty)$ be a scalar function and $\mathcal{F}(\cdot):(-\infty, a] \rightarrow \mathbb{R}^{n}$ be a vector function. If the integrations concerned are well defined, the following inequality holds:

$$
\begin{equation*}
\left(\int_{-\infty}^{a} \alpha(s) \mathcal{F}(s) \mathrm{d} s\right)^{T} M\left(\int_{-\infty}^{a} \alpha(s) \mathcal{F}(s) \mathrm{d} s\right) \leqslant \int_{-\infty}^{a} \alpha(s) \mathrm{d} s\left(\int_{-\infty}^{a} \alpha(s) \mathcal{F}^{T}(s) M \mathcal{F}(s) \mathrm{d} s\right) \tag{14}
\end{equation*}
$$

Remark 4. In the above lemma, if we take

$$
\alpha(t)= \begin{cases}1: & b \leqslant t \leqslant a \\ 0: & \text { otherwise }\end{cases}
$$

we can get the following well-known Jensen inequality [12]:

$$
\begin{equation*}
\left(\int_{b}^{a} \mathcal{F}(s) \mathrm{d} s\right)^{T} M\left(\int_{b}^{a} \mathcal{F}(s) \mathrm{d} s\right) \leqslant(a-b)\left(\int_{b}^{a} \mathcal{F}^{T}(s) M \mathcal{F}(s) \mathrm{d} s\right) . \tag{15}
\end{equation*}
$$

Therefore, the Jensen inequality (15) is a special case of the inequality (14). Lemma 4 will be used to deal with the infinite integral such as the unbounded distributed delays considered in this paper.

Lemma 5 [27]. Let f be a nonnegative function defined on $[0,+\infty)$. If f is Lebesgue integrable and is uniformly continuous on $[0,+\infty)$, then $\lim _{t \rightarrow+\infty} f(t)=0$.

3. Main results

In this section, we deal with the globally mean-square synchronization problem of the complex network (1) (or (12)) with stochastic nonlinearities and multiple stochastic disturbances.

In the following, for simplicity, we denote

$$
\begin{array}{lll}
\hat{X}=X_{1}^{T} X_{2}+X_{2}^{T} X_{1}, & \check{X}=X_{1}^{T}+X_{2}^{T} ; & \hat{Y}=Y_{1}^{T} Y_{2}+Y_{2}^{T} Y_{1}, \\
\check{Y}=Y_{1}^{T}+Y_{2}^{T}, & \hat{H}=H_{1}^{T} H_{2}+H_{2}^{T} H_{1}, & \check{H}=H_{1}^{T}+H_{2}^{T}
\end{array}
$$

Rewrite system (12) as

$$
\begin{align*}
\mathrm{d} x(t)= & {\left[\left(I_{N} \otimes A+W^{(1)} \otimes \Gamma_{1}\right) x(t)+\left(I_{N} \otimes D+W^{(2)} \otimes \Gamma_{2}\right) x(t-\tau(t))+\delta_{0}\left(I_{N} \otimes B_{1}\right) F(x(t))\right.} \\
& +\left(1-\delta_{0}\right)\left(I_{N} \otimes B_{2}\right) G(x(t))+\left(\delta(t)-\delta_{0}\right)\left(\left(I_{N} \otimes B_{1}\right) F(x(t))-\left(I_{N} \otimes B_{2}\right) G(x(t))\right) \\
& \left.+\left(I_{N} \otimes C\right) \int_{-\infty}^{t} \kappa(t-s) H(x(s)) \mathrm{d} s\right] \mathrm{d} t+\left(W^{(1)} \otimes \Gamma_{1}\right) x(t) \mathrm{d} \omega_{1}(t) \\
& +\left(W^{(2)} \otimes \Gamma_{2}\right) x(t-\tau(t)) \mathrm{d} \omega_{2}(t)+\sigma(t, x(t), x(t-\tau(t))) \mathrm{d} \omega_{3}(t) \tag{16}
\end{align*}
$$

In this paper, the discrete time delay we consider exists in an interval $0<\hbar_{1} \leqslant \tau(t) \leqslant \hbar_{2}$, that is, the range of the delay varies in an interval for which the lower bound is not restricted to 0 . Let us represent the time delay $\tau(t)$ as two parts: the constant part \hbar_{1} and the time-varying $\operatorname{part} d(t)$,

$$
\begin{equation*}
\tau(t)=d(t)+\hbar_{1}, \quad 0 \leqslant d(t) \leqslant \hbar_{2}-\hbar_{1}, \quad \dot{d}(t) \leqslant \mu \tag{17}
\end{equation*}
$$

By utilizing the most updated techniques for achieving delay dependence, the idea of 'delay partitioning' $[25,26]$ is now introduced to the constant part \hbar_{1}, that is, we divide \hbar_{1} into r equal divisions, where the integer $r \geqslant 1$ denotes the number of fractions.

Define

$$
\begin{equation*}
y(t)=\mathcal{A} \eta(t) \tag{18}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathcal{A}=\left[\left(I_{N} \otimes A+W^{(1)} \otimes \Gamma_{1}\right), 0_{N n \times r N n},\left(I_{N} \otimes D+W^{(2)} \otimes \Gamma_{2}\right), 0_{N n \times N n},\right. \\
\left.\quad \delta_{0}\left(I_{N} \otimes B_{1}\right),\left(1-\delta_{0}\right)\left(I_{N} \otimes B_{2}\right), I_{N} \otimes C, 0_{N n \times N n}\right] \\
\eta(t)=\operatorname{col}\left\{x(t), x\left(t-\frac{\hbar_{1}}{r}\right), \ldots, x\left(t-\frac{r-1}{r} \hbar_{1}\right), x\left(t-\hbar_{1}\right), x(t-\tau(t)), x\left(t-\hbar_{2}\right),\right. \\
\\
\left.F(x(t)), G(x(t)), \int_{-\infty}^{t} \kappa(t-s) H(x(s)) \mathrm{d} s, y(t)\right\} .
\end{gathered}
$$

Then, the network (12) can be expressed as

$$
\begin{equation*}
\mathrm{d} x(t)=\left[y(t)+\left(\delta(t)-\delta_{0}\right) \mathcal{B} \eta(t)\right] \mathrm{d} t+\sigma(t) \mathrm{d} \omega(t) \tag{19}
\end{equation*}
$$

where $\mathcal{B}=\left[0_{N n \times(r+3) N n},\left(I_{N} \otimes B_{1}\right),-\left(I_{N} \otimes B_{2}\right), 0_{N n \times 2 N n}\right], \mathrm{d} \omega(t)=\operatorname{col}\left\{d \omega_{1}(t)\right.$, $\left.\mathrm{d} \omega_{2}(t), \mathrm{d} \omega_{3}(t)\right\}, \sigma(t)=\left[\left(W^{(1)} \otimes \Gamma_{1}\right) x(t),\left(W^{(2)} \otimes \Gamma_{2}\right) x(t-\tau(t)), \sigma(t, x(t), x(t-\tau(t)))\right]$.

Theorem 1. Consider the complex network (1) (or (16)) with unbounded distributed delay and a discrete interval time-varying delay $\left(0<\hbar_{1} \leqslant \tau(t) \leqslant \hbar_{2}\right)$. For a given integer $r \geqslant 1$, the asymptotic synchronization in the mean square for (1) (or (16)) can be achieved if there exist matrices $P_{l}>0(l=1,2), Q_{k}>0(k=1,2, \ldots, r+1), R>0, Z>0$, matrices M_{k}, S and positive scalars $\lambda, \alpha, \beta, \gamma$ such that the following LMIs hold for all $1 \leqslant i<j \leqslant N$:

$$
\begin{equation*}
P_{1}<\lambda I \tag{20}
\end{equation*}
$$

$$
\Theta_{i j}=\left[\begin{array}{ccc}
\Xi_{i j} & \tilde{M} & \tilde{M} \tag{21}\\
* & -R & 0 \\
* & * & -Z
\end{array}\right]<0
$$

where
$\Xi_{i j}=W_{Q}^{T} \tilde{Q} W_{Q}+W_{S}^{T} \Pi_{i j} W_{S}$,
$\tilde{M}=\operatorname{diag}\left\{\sqrt{\frac{\hbar_{1}}{r}} M_{1}, \sqrt{\frac{\hbar_{1}}{r}} M_{2}, \ldots, \sqrt{\frac{\hbar_{1}}{r}} M_{r}, 0,0, \sqrt{\hbar_{2}-\hbar_{1}} M_{r+1}, 0,0,0,0,0\right\}$,
$W_{Q}=\left[\begin{array}{ccc}I_{r n \times r n} & 0_{r n \times n} & 0_{r n \times 7 n} \\ 0_{r n \times n} & I_{r n \times r n} & 0_{r n \times 7 n}\end{array}\right], \quad \tilde{Q}=\left[\begin{array}{cc}\mathbf{Q}+\mathbf{M}+\mathbf{M}^{T} & -\mathbf{M} \\ * & -\mathbf{Q}\end{array}\right]$,
$W_{S}=\left[\begin{array}{ccc}I_{n \times n} & 0_{n \times n} & 0_{n \times(r n+6 n)} \\ 0_{n \times r n} & I_{n \times n} & 0_{n \times 7 n} \\ 0_{n \times(r n+n)} & I_{n \times n} & 0_{n \times 6 n} \\ 0_{n \times(r n+2 n)} & I_{n \times n} & 0_{n \times 5 n} \\ 0_{n \times(r n+3 n)} & I_{n \times n} & 0_{n \times 4 n} \\ 0_{n \times(r n+4 n)} & I_{n \times n} & 0_{n \times 3 n} \\ 0_{n \times(r n+5 n)} & I_{n \times n} & 0_{n \times 2 n} \\ 0_{n \times(r n+6 n)} & I_{n \times n} & 0_{n \times n} \\ 0_{n \times(r n+6 n)} & 0_{n \times n} & I_{n \times n}\end{array}\right]$,
$\Pi_{i j}=\left[\begin{array}{ccccccccc}\pi_{(1,1)} & 0 & \pi_{(1,3)} & 0 & \alpha \check{X}+\delta_{0} P_{1} B_{1} & \beta \check{Y}+\left(1-\delta_{0}\right) P_{1} B_{2} & \gamma \check{H} & \pi_{(1,8)} & P_{1} C \\ * & 0 & 0 & M_{r+1}^{T} & 0 & 0 & 0 & 0 & 0 \\ * & * & \pi_{(3,3)} & 0 & 0 & 0 & 0 & \pi_{(3,8)} & 0 \\ * & * & * & -2 M_{r+1} & 0 & 0 & 0 & 0 & 0 \\ * & * & * & * & \pi_{(5,5)} & \pi_{(5,6)} & 0 & \delta_{0} B_{1}^{T} S^{T} & 0 \\ * & * & * & * & * & \pi_{(6,6)} & 0 & \left(1-\delta_{0}\right) B_{2}^{T} S^{T} & 0 \\ * & * & * & * & * & * & \pi_{(7,7)} & 0 & 0 \\ * & * & * & * & * & * & * & \hbar_{2} R-S-S^{T} & S C \\ * & * & * & * & * & * & * & * & -\frac{1}{\bar{\kappa}} P_{2}\end{array}\right]$,
$\pi_{(1,1)}=\left(A^{T} P_{1}+P_{1} A\right)+\lambda \Sigma_{1}^{T} \Sigma_{1}+Q_{r+1}-N w_{i j}^{(1,1)} \Gamma_{1}^{T} P_{1} \Gamma_{1}$

$$
-N w_{i j}^{(1)}\left(P_{1} \Gamma_{1}+\Gamma_{1}^{T} P_{1}\right)-\alpha \hat{X}-\beta \hat{Y}-\gamma \hat{H}
$$

$\pi_{(1,3)}=P_{1} D-N w_{i j}^{(2)} P_{1} \Gamma_{2}, \quad \pi_{(1,8)}=A^{T} S^{T}-N w_{i j}^{(1)} \Gamma_{1}^{T} S^{T}$,
$\pi_{(3,3)}=\lambda \Sigma_{2}^{T} \Sigma_{2}-(1-\mu) Q_{r+1}-N w_{i j}^{(2,2)} \Gamma_{2}^{T} P_{1} \Gamma_{2}, \quad \pi_{(3,8)}=D^{T} S^{T}-N w_{i j}^{(2)} \Gamma_{2}^{T} S^{T}$,
$\pi_{(5,5)}=-2 \alpha I+\delta_{0}\left(1-\delta_{0}\right) \hbar_{2} B_{1}^{T} Z B_{1}, \quad \pi_{(5,6)}=-\delta_{0}\left(1-\delta_{0}\right) \hbar_{2} B_{1}^{T} Z B_{2}$,
$\pi_{(6,6)}=-2 \beta I+\delta_{0}\left(1-\delta_{0}\right) \hbar_{2} B_{2}^{T} Z B_{2}, \quad \pi_{(7,7)}=-2 \gamma I+\tilde{\kappa} P_{2}$,
$\mathbf{Q}=\operatorname{diag}\left\{Q_{1}, Q_{2}, \ldots, Q_{r}\right\}, \quad \mathbf{M}=\operatorname{diag}\left\{M_{1}, M_{2}, \ldots, M_{r}\right\}$,
and $\quad W^{(1,1)}=W^{(1)} W^{(1)}=\left(w_{i j}^{(1,1)}\right)_{N \times N}, \quad W^{(2,2)}=W^{(2)} W^{(2)}=\left(w_{i j}^{(2,2)}\right)_{N \times N}$.
Proof. Construct a matrix functional $V\left(t, x_{t}\right) \in \mathcal{C}^{1,2}\left(\mathbb{R} \times \mathbb{R}^{n N}, \mathbb{R}^{+}\right)$as follows:
$V\left(t, x_{t}\right)=V_{1}\left(t, x_{t}\right)+V_{2}\left(t, x_{t}\right)+V_{3}\left(t, x_{t}\right)+V_{4}\left(t, x_{t}\right)+V_{5}\left(t, x_{t}\right)+V_{6}\left(t, x_{t}\right)$,
where

$$
\begin{aligned}
& V_{1}\left(t, x_{t}\right)=x^{T}(t)\left(\mathcal{U} \otimes P_{1}\right) x(t), \\
& V_{2}\left(t, x_{t}\right)=\sum_{k=1}^{r} \int_{t-\frac{k}{r} \hbar_{1}}^{t-\frac{k-1}{r} \hbar_{1}} x^{T}(s)\left(\mathcal{U} \otimes Q_{k}\right) x(s) \mathrm{d} s, \\
& V_{3}\left(t, x_{t}\right)=\int_{t-\tau(t)}^{t} x^{T}(s)\left(\mathcal{U} \otimes Q_{r+1}\right) x(s) \mathrm{d} s \\
& V_{4}\left(t, x_{t}\right)=\int_{0}^{+\infty} \kappa(s) \mathrm{d} s \int_{t-s}^{t} H^{T}(x(\theta))\left(\mathcal{U} \otimes P_{2}\right) H(x(\theta)) \mathrm{d} \theta, \\
& V_{5}\left(t, x_{t}\right)=\int_{t-\hbar_{2}}^{t} \int_{s}^{t} y^{T}(\theta)(\mathcal{U} \otimes R) y(\theta) \mathrm{d} \theta \mathrm{~d} s, \\
& V_{6}\left(t, x_{t}\right)=\delta_{0}\left(1-\delta_{0}\right) \int_{t-\hbar_{2}}^{t} \int_{s}^{t} \eta^{T}(\theta) \mathcal{B}^{T}(\mathcal{U} \otimes Z) \mathcal{B} \eta(\theta) \mathrm{d} \theta \mathrm{~d} s
\end{aligned}
$$

with $r \geqslant 1$ (number of fractions) being an integer and $\mathcal{U}=\left[u_{m \alpha}\right]_{N \times N}$ with $u_{m \alpha}= \begin{cases}-1, & \alpha \neq m ; \\ N-1, & \alpha=m .\end{cases}$
The infinitesimal operator \mathscr{L} of $V\left(t, x_{t}\right)$ is defined as follows [24]:

$$
\begin{equation*}
\mathscr{L} V\left(t, x_{t}\right)=\lim _{\Delta \rightarrow 0^{+}} \frac{1}{\Delta}\left[\mathbb{E}\left\{V\left(t+\Delta, x_{t+\Delta}\right) \mid x_{t}\right\}-V\left(t, x_{t}\right)\right] . \tag{23}
\end{equation*}
$$

With the detailed mathematical derivations in the appendix, we obtain

$$
\begin{equation*}
\mathbb{E}\left\{\mathscr{L} V\left(t, x_{t}\right)\right\}=\sum_{1 \leqslant i<j \leqslant N} \xi_{i j}^{T}(t)\left(\Xi_{i j}+\tilde{M}\left(I_{8+r} \otimes\left(R^{-1}+Z^{-1}\right)\right) \tilde{M}^{T}\right) \xi_{i j}(t) \tag{24}
\end{equation*}
$$

where

$$
\begin{aligned}
& \xi_{i j}(t)=\operatorname{col}\left\{\left(\Upsilon_{i}(t)-\Upsilon_{j}(t)\right),\left(\zeta_{i}(t)-\zeta_{j}(t)\right),\left(\varsigma_{i}(t)-\varsigma_{j}(t)\right)\right\} \\
& \Upsilon_{i}(t)=\operatorname{col}\left\{x_{i}(t), x_{i}\left(t-\frac{1}{r} \hbar_{1}\right), \ldots, x_{i}\left(t-\frac{r-1}{r} \hbar_{1}\right)\right\}, \\
& \zeta_{i}(t)=\operatorname{col}\left\{x_{i}\left(t-\hbar_{1}\right), x_{i}(t-\tau(t)), x_{i}\left(t-\hbar_{2}\right)\right\}, \\
& \varsigma_{i}(t)=\operatorname{col}\left\{f\left(x_{i}(t)\right), g\left(x_{i}(t)\right), h\left(x_{i}(t)\right), y_{i}(t), \int_{-\infty}^{t} \kappa(t-s) h\left(x_{i}(s)\right) \mathrm{d} s\right\} .
\end{aligned}
$$

By the Schur complement, we can see that condition (21) ensures $\hat{\Theta}_{i j}=\Xi_{i j}+\tilde{M}\left(I_{8+r} \otimes\right.$ $\left.\left(R^{-1}+Z^{-1}\right)\right) \tilde{M}^{T}<0$, and then it follows that

$$
\begin{align*}
\mathbb{E}\left\{\mathscr{L} V\left(t, x_{t}\right)\right\} & \leqslant \lambda_{\max }\left(\hat{\Theta}_{i j}\right) \sum_{1 \leqslant i<j \leqslant N} \mathbb{E}\left\{\left\|\xi_{i j}(t)\right\|^{2}\right\} \\
& \leqslant \vartheta \sum_{1 \leqslant i<j \leqslant N} \mathbb{E}\left\{\left\|x_{i}(t)-x_{j}(t)\right\|^{2}\right\} \tag{25}
\end{align*}
$$

where $\vartheta=\max _{1 \leqslant i<j \leqslant N}\left\{\lambda_{\max }\left(\hat{\Theta}_{i j}\right)\right\}<0$. Therefore, we have

$$
\begin{align*}
\mathbb{E}\{V(t)\}-\mathbb{E}\{V(0)\} & =\int_{0}^{t} \mathbb{E}\{\mathscr{L} V(s)\} \mathrm{d} s \\
& \leqslant \vartheta \int_{0}^{t} \sum_{1 \leqslant i<j \leqslant N} \mathbb{E}\left\{\left\|x_{i}(s)-x_{j}(s)\right\|^{2}\right\} \mathrm{d} s, \tag{26}
\end{align*}
$$

which implies that

$$
\begin{equation*}
\int_{0}^{t} \sum_{1 \leqslant i<j \leqslant N} \mathbb{E}\left\{\left\|x_{i}(s)-x_{j}(s)\right\|^{2}\right\} \mathrm{d} s \leqslant-\frac{1}{\vartheta} \mathbb{E}\{V(0)\}+\frac{1}{\vartheta} \mathbb{E}\{V(t)\} \leqslant-\frac{1}{\vartheta} \mathbb{E}\{V(0)\} \tag{27}
\end{equation*}
$$

From (8)-(10), it can be inferred that there exists a positive constant ε such that

$$
\begin{gather*}
\|f(u)-f(v)\| \leqslant \varepsilon\|u-v\|, \quad\|g(u)-g(v)\| \leqslant \varepsilon\|u-v\| \quad \text { and } \\
\|h(u)-h(v)\| \leqslant \varepsilon\|u-v\|, \quad \forall u, v \in \mathbb{R}^{n} . \tag{28}
\end{gather*}
$$

Accordingly, by (28) and assumption 3, we can obtain $V(0)<+\infty$, then we have

$$
\int_{0}^{t} \sum_{1 \leqslant i<j \leqslant N} \mathbb{E}\left\{\left\|x_{i}(s)-x_{j}(s)\right\|^{2}\right\} \mathrm{d} s<+\infty
$$

Moreover, it is not difficult to see that $\mathbb{E}\left\{\left\|x_{i}(s)-x_{j}(s)\right\|^{2}\right\}$ is uniformly continuous on $[0,+\infty)$. Therefore, by lemma 5, we obtain

$$
\sum_{1 \leqslant i<j \leqslant N} \mathbb{E}\left\{\left\|x_{i}(s)-x_{j}(s)\right\|^{2}\right\} \rightarrow 0, \quad \text { as } \quad t \rightarrow+\infty
$$

In other words, all the subsystems in (1) are asymptotically synchronized in the mean square. The proof is complete.

Remark 5. The complex dynamical network (1) is a rather general system, since the mixed time delays, the stochastic nonlinearities as well as the stochastic disturbances all have been taken into account in the proposed network framework. It should also be pointed out that the distributed delays studied here comprise two types, one is the unbounded distributed time delay that we have already considered, and the other is the bounded delay that can be demonstrated as follows. If we take

$$
\kappa(s)= \begin{cases}1, & 0 \leqslant s \leqslant \rho<+\infty \\ 0, & \text { otherwise }\end{cases}
$$

then the distributed time delay becomes finite in this case. Similar result can be derived easily for the bounded delay case, which is therefore omitted here. Note that, in [19, 28], the bounded distributed time delays in neural networks were studied. However, in almost all the literature concerning complex (neural) networks with mixed time delays, the stochastic nonlinearities have not been investigated yet. Therefore, in this paper, the model we put forward can reflect more intrinsic characteristics of the real-time systems, and the main results obtained are more general than the existing ones.

Remark 6. By taking advantage of a novel matrix functional and linear matrix inequality (LMI) techniques, the synchronization criteria have been derived in the form of LMIs for the stochastic complex networks with mixed time delays, stochastic nonlinearities as well as multiple stochastic disturbances. The LMI-based conditions can be readily checked by using the LMI toolbox in Matlab or other standard numerical software. An important feature of the reported results lies in that all the conditions are dependent on both the lower and upper bounds of the time-varying delays, which is made possible by utilizing the most updated techniques for achieving delay dependence.

4. Numerical example

In this section, we present a numerical example so as to illustrate the advantage and usefulness of our main results.

Consider a system coupled by three identical second-order complex networks with the network parameters given as follows:
$A=\left[\begin{array}{cc}-2.5 & 0.3 \\ 0.9 & -1\end{array}\right], \quad B_{1}=\left[\begin{array}{cc}-1.6 & 0.4 \\ 0.3 & -0.5\end{array}\right], \quad B_{2}=\left[\begin{array}{cc}-1.5 & 0.5 \\ 0.8 & -1.5\end{array}\right]$,
$D=\left[\begin{array}{cc}-2.4 & 0.8 \\ 0.4 & -1.6\end{array}\right], \quad C=\left[\begin{array}{cc}-2 & 0.6 \\ 0.8 & -1.2\end{array}\right]$,
$\delta_{0}=0.56, \quad \kappa(s)=\mathrm{e}^{-4 s}, \quad \tau(t)=1+0.5 \sin (2 t)$.
Choose the coupling matrices $W^{(1)}, W^{(2)}$ and the linking matrices Γ_{1}, Γ_{2} as

$$
\begin{aligned}
& W^{(1)}=\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right], \quad W^{(2)}=\left[\begin{array}{ccc}
-3 & 1 & 2 \\
1 & -2 & 1 \\
1 & 2 & -3
\end{array}\right] ; \\
& \Gamma_{1}=\left[\begin{array}{cc}
0.7 & -0.6 \\
-0.4 & 0.7
\end{array}\right] ; \quad \Gamma_{2}=\left[\begin{array}{cc}
-0.3 & 0.25 \\
-0.35 & -0.4
\end{array}\right] .
\end{aligned}
$$

Let the nonlinear function and the noise intensity function vector be given by
$f\left(x_{i}(t)\right)=\left(0.5 x_{i 1}(t)-\tanh \left(0.2 x_{i 1}(t)\right)+0.2 x_{i 2}(t), 0.95 x_{i 2}(t)-\tanh \left(0.75 x_{i 2}(t)\right)\right)^{T}$,
$g\left(x_{i}(t)\right)=h\left(x_{i}(t)\right)=\left(0.2 x_{i 1}(t)-\tanh \left(0.1 x_{i 1}(t)\right), 0.1 x_{i 2}(t)\right)^{T}, \quad i=1,2,3$,
$\sigma(t, u, v)=\left[\begin{array}{cccc}-0.1 & 0.1 & 0.2 & -0.2 \\ 0.1 & -0.1 & 0.2 & -0.2\end{array}\right]\left[\begin{array}{l}u \\ v\end{array}\right]$.
Then, it is easy to verify that $\tilde{\kappa}=0.25, \mu=1, \hbar_{1}=0.5, \hbar_{2}=1.5$ and
$X_{1}=\left(\begin{array}{cc}0.3 & 0.2 \\ 0 & 0.2\end{array}\right), \quad X_{2}=\left(\begin{array}{cc}0.5 & 0.2 \\ 0 & 0.95\end{array}\right), \quad Y_{1}=H_{1}=\left(\begin{array}{cc}0.1 & 0 \\ 0 & 0.1\end{array}\right)$,
$Y_{2}=H_{2}=\left(\begin{array}{cc}0.2 & 0 \\ 0 & 0.1\end{array}\right), \quad \Sigma_{1}=\left[\begin{array}{cc}-0.1 & 0.1 \\ 0.1 & -0.1\end{array}\right], \quad \Sigma_{2}=\left[\begin{array}{cc}0.2 & -0.2 \\ 0.2 & -0.2\end{array}\right]$.
By using the Matlab LMI toolbox, if we take $r=1$, LMIs (20)-(21) are feasible and the solutions are given as
$P_{1}=\left[\begin{array}{cc}26.0331 & 7.8656 \\ 7.8656 & 15.4338\end{array}\right], \quad P_{2}=\left[\begin{array}{cc}17.9620 & -2.9178 \\ -2.9178 & 10.8588\end{array}\right]$,
$Q_{1}=\left[\begin{array}{cc}24.3735 & -2.2467 \\ -2.2467 & 19.2441\end{array}\right], \quad Q_{2}=\left[\begin{array}{cc}51.0797 & -16.0797 \\ -16.0797 & 21.4102\end{array}\right]$,
$R=\left[\begin{array}{ll}5.6141 & 3.7871 \\ 3.7871 & 4.0428\end{array}\right], \quad Z=\left[\begin{array}{cc}14.6002 & 2.9157 \\ 2.9157 & 17.2751\end{array}\right]$,
$\lambda=31.4146, \quad \alpha=19.8248, \quad \beta=24.6340, \quad \gamma=12.2727$.
According to theorem 1, the array of coupled delayed complex network (1) with multiple stochastic disturbances and stochastic nonlinearities can achieve globally asymptotic synchronization in the mean square under the allowable interval delay. Such a conclusion is further supported by the simulation results given in figures $1-2$, where the initial states for system (1) are taken randomly constant in $[-1,1] \times[-1,1]$.

Figure 1. Synchronization error of $x_{i 1}(t)-x_{11}(t)(i=2,3)$.

Figure 2. Synchronization error of $x_{i 2}(t)-x_{12}(t)(i=2,3)$.

5. Conclusions

In this paper, we have investigated the network synchronization problem of a new class of stochastic delayed complex networks with N identical subsystems. By employing a novel matrix functional, the properties of the Kronecker product, linear matrix inequality (LMI) techniques and stochastic analysis theory, the synchronization criteria have been established for a stochastic complex networks with mixed time delays, stochastic nonlinearities as well as multiple stochastic disturbances. Note that the LMI-based criteria reported in the present paper are dependent on the allowable lower and upper bound of the discrete time-varying
delays, which are made possible by utilizing the most updated techniques for achieving delay dependence. Moreover, the LMI-based criteria can be readily verified by the standard numerical software. In the end of this paper, we have exploited a numerical example to show the usefulness of our results.

Acknowledgments

This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, an International Joint Project sponsored by the Royal Society of the UK, the National 973 Program of China under Grant 2009CB320600, the National Natural Science Foundation of China under Grant 60804028, the Specialized Research Fund for the Doctoral Program of Higher Education for New Teachers under Grant 200802861044, the Teaching and Research Fund for Excellent Young Teachers at Southeast University of China, and the Alexander von Humboldt Foundation of Germany.

Appendix. The detailed derivations of $\mathbb{E}\left\{\mathscr{L} V\left(t, x_{t}\right)\right\}$ in the proof of theorem 1

Based on the properties of the Kronecker product and assumption 1, it follows readily that

$$
\mathcal{U} \otimes W^{(i)}=N W^{(i)}, \quad\left(W^{(i)} \otimes \Gamma_{i}\right)(\mathcal{U} \otimes P)\left(W^{(j)} \otimes \Gamma_{j}\right)=N\left(W^{(i)} W^{(j)}\right) \otimes\left(\Gamma_{i} P \Gamma_{j}\right)
$$

$$
i, j=1,2
$$

Then, with lemmas 1, 3 and 4, we have

$$
\begin{align*}
\mathscr{L} V_{1}\left(t, x_{t}\right)= & 2 x^{T}(t)\left(\mathcal{U} \otimes P_{1}\right) y(t)+x^{T}(t)\left(W^{(1)} \otimes \Gamma_{1}^{T}\right)\left(\mathcal{U} \otimes P_{1}\right)\left(W^{(1)} \otimes \Gamma_{1}\right) x(t) \\
& +x^{T}(t-\tau(t))\left(W^{(2)} \otimes \Gamma_{2}^{T}\right)\left(\mathcal{U} \otimes P_{1}\right)\left(W^{(2)} \otimes \Gamma_{2}\right) x(t-\tau(t)) \\
& +\sigma^{T}(t, x(t), x(t-\tau(t)))\left(\mathcal{U} \otimes P_{1}\right) \sigma(t, x(t), x(t-\tau(t))) \\
& +2\left(\delta(t)-\delta_{0}\right) x^{T}(t)\left(\mathcal{U} \otimes P_{1}\right) \mathcal{B} \eta(t) \\
= & \sum_{1 \leqslant i<j \leqslant N}\left[\left(x_{i}(t)-x_{j}(t)\right)^{T}\left(2 P_{1}\left(y_{i}(t)-y_{j}(t)\right)-N w_{i j}^{(1,1)} \Gamma_{1}^{T} P_{1} \Gamma_{1}\left(x_{i}(t)-x_{j}(t)\right)\right)\right. \\
& -\left(x_{i}(t-\tau(t))-x_{j}(t-\tau(t))\right)^{T} N w_{i j}^{(2,2)} \Gamma_{2}^{T} P_{1} \Gamma_{2}\left(x_{i}(t-\tau(t))-x_{j}(t-\tau(t))\right) \\
& +\left(\sigma_{i}\left(t, x_{i}(t), x_{i}(t-\tau(t))\right)-\sigma_{j}\left(t, x_{j}(t), x_{j}(t-\tau(t))\right)\right)^{T} P_{1} \\
& \left.\times\left(\sigma_{i}\left(t, x_{i}(t), x_{i}(t-\tau(t))\right)-\sigma_{j}\left(t, x_{j}(t), x_{j}(t-\tau(t))\right)\right)\right] \\
= & \sum_{1 \leqslant i<j \leqslant N}\left\{(x _ { i } (t) - x _ { j } (t)) ^ { T } \left[\left(P_{1} A+A^{T} P_{1}-N w_{i j}^{(1)}\left(P_{1} \Gamma_{1}+\Gamma_{1}^{T} P_{1}\right)\right.\right.\right. \\
& \left.-N w_{i j}^{(1,1)} \Gamma_{1}^{T} P_{1} \Gamma_{1}\right)\left(x_{i}(t)-x_{j}(t)\right)+2\left(P_{1} D-N w_{i j}^{(2)} P_{1} \Gamma_{2}\right) \\
& \times\left(x_{i}(t-\tau(t))-x_{j}(t-\tau(t))\right) \\
& +2 \delta_{0} P_{1} B_{1}\left(f\left(x_{i}(t)\right)-f\left(x_{j}(t)\right)\right)+2\left(1-\delta_{0}\right) P_{1} B_{2}\left(g\left(x_{i}(t)\right)-g\left(x_{j}(t)\right)\right) \\
& \left.+2 P_{1} C \int_{-\infty}^{t} \kappa(t-s)\left(h\left(x_{i}(s)\right)-h\left(x_{j}(s)\right)\right) \mathrm{d} s\right] \\
& -\left(x_{i}(t-\tau(t))-x_{j}(t-\tau(t))\right)^{T} N w_{i j}^{(2,2)} \Gamma_{2}^{T} P_{1} \Gamma_{2}\left(x_{i}(t-\tau(t))-x_{j}(t-\tau(t))\right) \\
& +\left(\sigma_{i}\left(t, x_{i}(t), x_{i}(t-\tau(t))\right)-\sigma_{j}\left(t, x_{j}(t), x_{j}(t-\tau(t))\right)\right)^{T} P_{1} \\
& \left.\times\left(\sigma_{i}\left(t, x_{i}(t), x_{i}(t-\tau(t))\right)-\sigma_{j}\left(t, x_{j}(t), x_{j}(t-\tau(t))\right)\right)\right\}, \tag{A.1}
\end{align*}
$$

$\mathscr{L} V_{2}\left(t, x_{t}\right)=x^{T}(t)\left(\mathcal{U} \otimes Q_{1}\right) x(t)-x^{T}\left(t-\hbar_{1}\right)\left(\mathcal{U} \otimes Q_{r}\right) x\left(t-\hbar_{1}\right)$

$$
\begin{align*}
& -\sum_{l=1}^{r-1}\left(x^{T}\left(t-\frac{l}{r} \hbar_{1}\right)\left(\mathcal{U} \otimes\left(Q_{l}-Q_{l+1}\right)\right) x\left(t-\frac{l}{r} \hbar_{1}\right)\right) \\
& =\sum_{1 \leqslant i<j \leqslant N}\left[\left(x_{i}(t)-x_{j}(t)\right)^{T} Q_{1}\left(x_{i}(t)-x_{j}(t)\right)-\left(x_{i}\left(t-\hbar_{1}\right)-x_{j}\left(t-\hbar_{1}\right)\right)^{T}\right. \\
& \times Q_{r}\left(x_{i}\left(t-\hbar_{1}\right)-x_{j}\left(t-\hbar_{1}\right)\right)-\sum_{l=1}^{r-1}\left(x_{i}\left(t-\frac{l}{r} \hbar_{1}\right)-x_{j}\left(t-\frac{l}{r} \hbar_{1}\right)\right)^{T} \\
& \times\left(Q_{l}-Q_{l+1}\right)\left(x_{i}\left(t-\frac{l}{r} \hbar_{1}\right)-x_{j}\left(t-\frac{l}{r} \hbar_{1}\right)\right), \tag{A.2}
\end{align*}
$$

$\mathscr{L} V_{3}\left(t, x_{t}\right)=x^{T}(t)\left(\mathcal{U} \otimes Q_{r+1}\right) x(t)-(1-\dot{\tau}(t)) x^{T}(t-\tau(t))\left(\mathcal{U} \otimes Q_{r+1}\right) x(t-\tau(t))$

$$
\begin{align*}
\leqslant & \sum_{1 \leqslant i<j \leqslant N}\left[\left(x_{i}(t)-x_{j}(t)\right)^{T} Q_{r+1}\left(x_{i}(t)-x_{j}(t)\right)-(1-\mu)\left(x_{i}(t-\tau(t))\right.\right. \\
& \left.\left.-x_{j}(t-\tau(t))\right)^{T} Q_{r+1}\left(x_{i}(t-\tau(t))-x_{j}(t-\tau(t))\right)\right] \tag{A.3}
\end{align*}
$$

$\mathscr{L} V_{4}\left(t, x_{t}\right)=\int_{0}^{+\infty} \kappa(s) H^{T}(x(t))\left(\mathcal{U} \otimes P_{2}\right) H(x(t)) \mathrm{d} s$

$$
-\int_{0}^{+\infty} \kappa(s) H^{T}(x(t-s))\left(\mathcal{U} \otimes P_{2}\right) H(x(t-s)) \mathrm{d} s
$$

$$
=\tilde{\kappa} H^{T}(x(t))\left(\mathcal{U} \otimes P_{2}\right) H(x(t))-\int_{0}^{+\infty} \kappa(s) H^{T}(x(t-s))\left(\mathcal{U} \otimes P_{2}\right) H(x(t-s)) \mathrm{d} s
$$

$$
=\sum_{1 \leqslant i<j \leqslant N}\left[\tilde{\kappa}\left(h\left(x_{i}(t)\right)-h\left(x_{j}(t)\right)\right)^{T} P_{2}\left(h\left(x_{i}(t)\right)-h\left(x_{j}(t)\right)\right)\right.
$$

$$
\left.-\int_{-\infty}^{t} \kappa(t-s)\left(h\left(x_{i}(s)\right)-h\left(x_{j}(s)\right)\right)^{T} P_{2}\left(h\left(x_{i}(s)\right)-h\left(x_{j}(s)\right)\right) \mathrm{d} s\right]
$$

$$
\leqslant \sum_{1 \leqslant i<j \leqslant N}\left[\tilde{\kappa}\left(h\left(x_{i}(t)\right)-h\left(x_{j}(t)\right)\right)^{T} P_{2}\left(h\left(x_{i}(t)\right)-h\left(x_{j}(t)\right)\right)\right.
$$

$$
-\frac{1}{\tilde{\kappa}}\left(\int_{-\infty}^{t} \kappa(t-s)\left(h\left(x_{i}(s)\right)-h\left(x_{j}(s)\right)\right) \mathrm{d} s\right)^{T}
$$

$$
\begin{equation*}
\left.\times P_{2}\left(\int_{-\infty}^{t} \kappa(t-s)\left(h\left(x_{i}(s)\right)-h\left(x_{j}(s)\right)\right) \mathrm{d} s\right)\right] \tag{A.4}
\end{equation*}
$$

$\mathscr{L} V_{5}\left(t, x_{t}\right)=\hbar_{2} y^{T}(t)(\mathcal{U} \otimes R) y(t)-\int_{t-\hbar_{1}}^{t} y^{T}(s)(\mathcal{U} \otimes R) y(s) \mathrm{d} s$

$$
\begin{align*}
& -\int_{t-\hbar_{2}}^{t-\hbar_{1}} y^{T}(s)(\mathcal{U} \otimes R) y(s) \mathrm{d} s=\sum_{1 \leqslant i<j \leqslant N}\left[\hbar_{2}\left(y_{i}(t)-y_{j}(t)\right)^{T} R\left(y_{i}(t)-y_{j}(t)\right)\right. \\
& -\sum_{k=1}^{r}\left(\int_{t-\frac{k}{r} \hbar_{1}}^{t-\frac{k-1}{r} \hbar_{1}}\left(y_{i}(s)-y_{j}(s)\right)^{T} R\left(y_{i}(s)-y_{j}(s)\right) \mathrm{d} s\right) \\
& \left.-\int_{t-\hbar_{2}}^{t-\hbar_{1}}\left(y_{i}(s)-y_{j}(s)\right)^{T} R\left(y_{i}(s)-y_{j}(s)\right) \mathrm{d} s\right] \tag{A.5}
\end{align*}
$$

$\mathscr{L} V_{6}\left(t, x_{t}\right)=\hbar_{2} \delta_{0}\left(1-\delta_{0}\right) \eta^{T}(t) \mathcal{B}^{T}(\mathcal{U} \otimes Z) \mathcal{B} \eta(t)$

$$
\begin{aligned}
& -\delta_{0}\left(1-\delta_{0}\right)\left[\int_{t-\hbar_{1}}^{t} \eta^{T}(s) \mathcal{B}^{T}(\mathcal{U} \otimes Z) \mathcal{B} \eta(s) \mathrm{d} s\right. \\
& \left.+\int_{t-\hbar_{2}}^{t-\hbar_{1}} \eta^{T}(s) \mathcal{B}^{T}(\mathcal{U} \otimes Z) \mathcal{B} \eta(s) \mathrm{d} s\right] \\
= & \delta_{0}\left(1-\delta_{0}\right) \sum_{1 \leqslant i<j \leqslant N}\left[\hbar _ { 2 } (\mathcal { B } _ { i } \eta _ { i } (t) - \mathcal { B } _ { j } \eta _ { j } (t)) ^ { T } Z \left(\left(\mathcal{B}_{i} \eta_{i}(t)-\mathcal{B}_{j} \eta_{j}(t)\right)\right.\right.
\end{aligned}
$$

$$
-\sum_{k=1}^{r}\left(\int_{t-\frac{k}{r} \hbar_{1}}^{t-\frac{k-1}{r} \hbar_{1}}\left(\mathcal{B}_{i} \eta_{i}(s)-\mathcal{B}_{j} \eta_{j}(s)\right)^{T} Z\left(\mathcal{B}_{i} \eta_{i}(s)-\mathcal{B}_{j} \eta_{j}(s)\right) \mathrm{d} s\right)
$$

$$
\left.-\int_{t-\hbar_{2}}^{t-\hbar_{1}}\left(\mathcal{B}_{i} \eta_{i}(s)-\mathcal{B}_{j} \eta_{j}(s)\right)^{T} Z\left(\mathcal{B}_{i} \eta_{i}(s)-\mathcal{B}_{j} \eta_{j}(s)\right) \mathrm{d} s\right]
$$

$$
=\delta_{0}\left(1-\delta_{0}\right) \sum_{1 \leqslant i<j \leqslant N}\left[\hbar _ { 2 } \left((f (x _ { i } (t)) - f (x _ { j } (t))) ^ { T } B _ { 1 } ^ { T } Z B _ { 1 } \left(f\left(x_{i}(t)\right)\right.\right.\right.
$$

$$
\left.-f\left(x_{j}(t)\right)\right)+\left(g\left(x_{i}(t)\right)-g\left(x_{j}(t)\right)\right)^{T} B_{2}^{T} Z B_{2}\left(g\left(x_{i}(t)\right)-g\left(x_{j}(t)\right)\right)
$$

$$
\left.-2\left(f\left(x_{i}(t)\right)-f\left(x_{j}(t)\right)\right)^{T} B_{1}^{T} Z B_{2}\left(g\left(x_{i}(t)\right)-g\left(x_{j}(t)\right)\right)\right)
$$

$$
-\sum_{k=1}^{r}\left(\int_{t-\frac{k}{r} \hbar_{1}}^{t-\frac{k-1}{r} \hbar_{1}}\left(\mathcal{B}_{i} \eta_{i}(s)-\mathcal{B}_{j} \eta_{j}(s)\right)^{T} Z\left(\mathcal{B}_{i} \eta_{i}(s)-\mathcal{B}_{j} \eta_{j}(s)\right) \mathrm{d} s\right)
$$

$$
\begin{equation*}
\left.-\int_{t-\hbar_{2}}^{t-\hbar_{1}}\left(\mathcal{B}_{i} \eta_{i}(s)-\mathcal{B}_{j} \eta_{j}(s)\right)^{T} Z\left(\mathcal{B}_{i} \eta_{i}(s)-\mathcal{B}_{j} \eta_{j}(s)\right) \mathrm{d} s\right] \tag{A.6}
\end{equation*}
$$

where the symbol $\mathcal{B}_{i} \eta_{i}(t)$ means the term $B_{1} f\left(x_{i}(t)\right)-B_{2} g\left(x_{i}(t)\right)$.
From the Newton-Leibniz formula, we have that for matrices $M_{k}(k=1,2, \ldots, r)$
$\phi_{k}(t) \triangleq 2 x^{T}\left(t-\frac{k-1}{r} \hbar_{1}\right)\left(\mathcal{U} \otimes M_{k}\right)$

$$
\begin{equation*}
\times\left[x\left(t-\frac{k-1}{r} \hbar_{1}\right)-x\left(t-\frac{k}{r} \hbar_{1}\right)-\int_{t-\frac{k}{r} \hbar_{1}}^{t-\frac{k-1}{r} \hbar_{1}} \mathrm{~d} x(s)\right]=0 \tag{A.7}
\end{equation*}
$$

$\varphi(t) \triangleq 2 x^{T}\left(t-\hbar_{2}\right)\left(\mathcal{U} \otimes M_{r+1}\right)\left[x\left(t-\hbar_{1}\right)-x\left(t-\hbar_{2}\right)-\int_{t-\hbar_{2}}^{t-\hbar_{1}} \mathrm{~d} x(s)\right]=0$.
Note that, in $\phi_{k}(t)$, it follows from lemma 2 that for all $k=1,2, \ldots, r$:

$$
\begin{aligned}
&-2 x^{T}\left(t-\frac{k-1}{r} \hbar_{1}\right)\left(\mathcal{U} \otimes M_{k}\right) \int_{t-\frac{k}{r} \hbar_{1}}^{t-\frac{k-1}{r} \hbar_{1}} \mathrm{~d} x(s) \\
&=-2 x^{T}\left(t-\frac{k-1}{r} \hbar_{1}\right)\left(\mathcal{U} \otimes M_{k}\right) \\
& \times \int_{t-\frac{k}{r} \hbar_{1}}^{t-\frac{k-1}{r} \hbar_{1}}\left[\left(y(s)+\left(\delta(s)-\delta_{0}\right) \mathcal{B} \eta(s)\right) \mathrm{d} s+\sigma(s) \mathrm{d} \omega(s)\right] \\
&= \sum_{1 \leqslant i<j \leqslant N}\left[-2\left(x_{i}\left(t-\frac{k-1}{r} \hbar_{1}\right)-x_{j}\left(t-\frac{k-1}{r} \hbar_{1}\right)\right)^{T}\right. \\
& \times M_{k}\left(\int_{t-\frac{k}{r} \hbar_{1}}^{t-\frac{k-1}{r} \hbar_{1}}\left(y_{i}(s)-y_{j}(s)\right) \mathrm{d} s\right)-2\left(x_{i}\left(t-\frac{k-1}{r} \hbar_{1}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.-x_{j}\left(t-\frac{k-1}{r} \hbar_{1}\right)\right)^{T} M_{k}\left(\int_{t-\frac{k}{r} \hbar_{1}}^{t-\frac{k-1}{r} \hbar_{1}}\left(\delta(s)-\delta_{0}\right)\left(\mathcal{B} \eta_{i}(s)-\mathcal{B} \eta_{j}(s)\right) \mathrm{d} s\right)\right] \\
& -2 x^{T}\left(t-\frac{k-1}{r} \hbar_{1}\right)\left(\mathcal{U} \otimes M_{k}\right) \int_{t-\frac{k}{r} \hbar_{1}}^{t-\frac{k-1}{r} \hbar_{1}} \sigma(s) \mathrm{d} \omega(s) \\
\leqslant & \sum_{1 \leqslant i<j \leqslant N}\left[\frac{1}{r} \hbar_{1}\left(x_{i}\left(t-\frac{k-1}{r} \hbar_{1}\right)-x_{j}\left(t-\frac{k-1}{r} \hbar_{1}\right)\right)^{T}\right. \\
& \times M_{k}\left(R^{-1}+Z^{-1}\right) M_{k}^{T}\left(x_{i}\left(t-\frac{k-1}{r} \hbar_{1}\right)-x_{j}\left(t-\frac{k-1}{r} \hbar_{1}\right)\right) \\
& +\left(\int_{t-\frac{k}{r} \hbar_{1}}^{t-\frac{k-1}{r} \hbar_{1}}\left(y_{i}(s)-y_{j}(s)\right)^{T} R\left(y_{i}(s)-y_{j}(s)\right) \mathrm{d} s\right) \\
& \left.+\left(\int_{t-\frac{k}{r} \hbar_{1}}^{t-\frac{k-1}{r} \hbar_{1}}\left(\delta(s)-\delta_{0}\right)^{2}\left(\mathcal{B}_{i} \eta_{i}(s)-\mathcal{B}_{j} \eta_{j}(s)\right)^{T} Z\left(\mathcal{B}_{i} \eta_{i}(s)-\mathcal{B}_{j} \eta_{j}(s)\right) \mathrm{d} s\right)\right] \\
& -2 x^{T}\left(t-\frac{k-1}{r} \hbar_{1}\right)\left(\mathcal{U} \otimes M_{k}\right) \int_{t-\frac{k}{r} \hbar_{1}}^{t-\frac{k-1}{r} \hbar_{1}} \sigma(s) \mathrm{d} \omega(s) . \tag{A.9}
\end{align*}
$$

Similarly, in $\varphi(t)$, we can show that

$$
-2 x^{T}\left(t-\hbar_{2}\right)\left(\mathcal{U} \otimes M_{r+1}\right) \int_{t-\hbar_{2}}^{t-\hbar_{1}} \mathrm{~d} x(s)
$$

$$
\begin{align*}
= & -2 x^{T}\left(t-\hbar_{2}\right)\left(\mathcal{U} \otimes M_{r+1}\right) \int_{t-\hbar_{2}}^{t-\hbar_{1}}\left[\left(y(s)+\left(\delta(s)-\delta_{0}\right) \mathcal{B} \eta(s)\right) \mathrm{d} s+\sigma(s) \mathrm{d} \omega(s)\right] \\
\leqslant & \sum_{1 \leqslant i<j \leqslant N}\left[\left(\hbar_{2}-\hbar_{1}\right)\left(x_{i}\left(t-\hbar_{2}\right)-x_{j}\left(t-\hbar_{2}\right)\right)^{T} M_{r+1}\left(R^{-1}+Z^{-1}\right)\right. \\
& \times M_{r+1}^{T}\left(x_{i}\left(t-\hbar_{2}\right)-x_{j}\left(t-\hbar_{2}\right)\right)+\int_{t-\hbar_{2}}^{t-\hbar_{1}}\left(y_{i}(s)-y_{j}(s)\right)^{T} R\left(y_{i}(s)-y_{j}(s)\right) \mathrm{d} s \\
& \left.+\int_{t-\hbar_{2}}^{t-\hbar_{1}}\left(\delta(s)-\delta_{0}\right)^{2}\left(\mathcal{B}_{i} \eta_{i}(s)-\mathcal{B}_{j} \eta_{j}(s)\right)^{T} Z\left(\mathcal{B}_{i} \eta_{i}(s)-\mathcal{B}_{j} \eta_{j}(s)\right) \mathrm{d} s\right] \\
& -2 x^{T}\left(t-\hbar_{2}\right)\left(\mathcal{U} \otimes M_{r+1}\right) \int_{t-\hbar_{2}}^{t-\hbar_{1}} \sigma(s) \mathrm{d} \omega(s) \tag{A.10}
\end{align*}
$$

From the definition (18), we have

$$
\begin{align*}
\psi(t) \triangleq 2 y^{T}(t) & (\mathcal{U} \otimes S)\left[\left(I_{N} \otimes A+W^{(1)} \otimes \Gamma_{1}\right) x(t)+\left(I_{N} \otimes D+W^{(2)} \otimes \Gamma_{2}\right) x(t-\tau(t))\right. \\
& +\delta_{0}\left(I_{N} \otimes B_{1}\right) F(x(t))+\left(1-\delta_{0}\right)\left(I_{N} \otimes B_{2}\right) G(x(t))+\left(I_{N} \otimes C\right) \\
& \left.\times \int_{-\infty}^{t} \kappa(t-s) H(x(s)) \mathrm{d} s-y(t)\right]=0 \tag{A.11}
\end{align*}
$$

which implies that

$$
\begin{aligned}
\psi(t)=\sum_{1 \leqslant i<j \leqslant N} & {\left[2\left(x_{i}(t)-x_{j}(t)\right)^{T}\left(A^{T} S^{T}-N w_{i j}^{(1)} \Gamma_{1}^{T} S^{T}\right)\left(y_{i}(t)-y_{j}(t)\right)\right.} \\
+ & 2\left(x_{i}(t-\tau(t))-x_{j}(t-\tau(t))\right)^{T}\left(D^{T} S^{T}-N w_{i j}^{(2)} \Gamma_{2}^{T} S^{T}\right)\left(y_{i}(t)-y_{j}(t)\right) \\
+ & 2\left(f\left(x_{i}(t)\right)-f\left(x_{j}(t)\right)\right)^{T} \delta_{0} B_{1}^{T} S^{T}\left(y_{i}(t)-y_{j}(t)\right)
\end{aligned}
$$

$$
\begin{align*}
& +2\left(g\left(x_{i}(t)\right)-g\left(x_{j}(t)\right)\right)^{T}\left(1-\delta_{0}\right) B_{2}^{T} S^{T}\left(y_{i}(t)-y_{j}(t)\right) \\
& +2\left(\int_{-\infty}^{t} \kappa(t-s)\left(h\left(x_{i}(s)\right)-h\left(x_{j}(s)\right)\right) \mathrm{d} s\right)^{T} C^{T} S^{T}\left(y_{i}(t)-y_{j}(t)\right) \\
& \left.-\left(y_{i}(t)-y_{j}(t)\right)^{T}\left(S^{T}+S\right)\left(y_{i}(t)-y_{j}(t)\right)\right]=0 \tag{A.12}
\end{align*}
$$

According to assumption 4 and condition (20), it is clear that

$$
\begin{align*}
{\left[\sigma _ { i } \left(t, x_{i}(t), x_{i}(t\right.\right.} & \left.-\tau(t)))-\sigma_{j}\left(t, x_{j}(t), x_{j}(t-\tau(t))\right)\right]^{T} P_{1}\left[\sigma_{i}\left(t, x_{i}(t), x_{i}(t-\tau(t))\right)\right. \\
& \left.\quad-\sigma_{j}\left(t, x_{j}(t), x_{j}(t-\tau(t))\right)\right] \leqslant \lambda\left[\left(x_{i}(t)-x_{j}(t)\right)^{T} \Sigma_{1}^{T} \Sigma_{1}\left(x_{i}(t)-x_{j}(t)\right)\right. \\
& \left.+\left(x_{i}(t-\tau(t))-x_{j}(t-\tau(t))\right)^{T} \Sigma_{2}^{T} \Sigma_{2}\left(x_{i}(t-\tau(t))-x_{j}(t-\tau(t))\right)\right] \\
& 1 \leqslant i<j \leqslant N . \tag{A.13}
\end{align*}
$$

At the same time, assumption 2 ensures that the following inequality holds:

$$
\alpha\left[\begin{array}{c}
x_{i}(t)-x_{j}(t) \\
f\left(x_{i}(t)\right)-f\left(x_{j}(t)\right)
\end{array}\right]^{T}\left[\begin{array}{cc}
X_{1}^{T} X_{2}+X_{2}^{T} X_{1} & -\left(X_{1}^{T}+X_{2}^{T}\right) \\
* & 2 I
\end{array}\right]\left[\begin{array}{c}
x_{i}(t)-x_{j}(t) \\
f\left(x_{i}(t)\right)-f\left(x_{j}(t)\right)
\end{array}\right] \leqslant 0
$$

i.e.,
$\alpha\left[\begin{array}{c}x_{i}(t)-x_{j}(t) \\ f\left(x_{i}(t)\right)-f\left(x_{j}(t)\right)\end{array}\right]^{T}\left[\begin{array}{cc}\hat{X} & -\check{X} \\ * & 2 I\end{array}\right]\left[\begin{array}{c}x_{i}(t)-x_{j}(t) \\ f\left(x_{i}(t)\right)-f\left(x_{j}(t)\right)\end{array}\right] \leqslant 0, \quad 1 \leqslant i<j \leqslant N$.

Similarly, one has

$$
\begin{align*}
& \beta\left[\begin{array}{c}
x_{i}(t)-x_{j}(t) \\
g\left(x_{i}(t)\right)-g\left(x_{j}(t)\right)
\end{array}\right]^{T}\left[\begin{array}{cc}
\hat{Y} & -Y \\
* & 2 I
\end{array}\right]\left[\begin{array}{c}
x_{i}(t)-x_{j}(t) \\
g\left(x_{i}(t)\right)-g\left(x_{j}(t)\right)
\end{array}\right] \leqslant 0, \tag{A.15}\\
& \gamma\left[\begin{array}{c}
x_{i}(t)-x_{j}(t) \\
h\left(x_{i}(t)\right)-h\left(x_{j}(t)\right)
\end{array}\right]^{T}\left[\begin{array}{cc}
\hat{H} & -\check{H} \\
* & 2 I
\end{array}\right]\left[\begin{array}{c}
x_{i}(t)-x_{j}(t) \\
h\left(x_{i}(t)\right)-h\left(x_{j}(t)\right)
\end{array}\right] \leqslant 0 . \tag{A.16}
\end{align*}
$$

Combining (A.1)-(A.16), considering condition (6) and noting that $\mathbb{E}\left\{2 x^{T}\left(t-\hbar_{2}\right)\left(\mathcal{U} \otimes M_{r+1}\right) \int_{t-\hbar_{2}}^{t-\hbar_{1}} \sigma(s) \mathrm{d} \omega(s)\right\}=0$,
$\mathbb{E}\left\{2 x^{T}\left(t-\frac{k-1}{r} \hbar_{1}\right)\left(\mathcal{U} \otimes M_{k}\right) \int_{t-\frac{k}{r} \hbar_{1}}^{t-\frac{k-1}{r} \hbar_{1}} \sigma(s) \mathrm{d} \omega(s)\right\}=0 \quad(k=1,2, \ldots, r) ;$
we get

$$
\begin{aligned}
\mathbb{E}\left\{\mathscr{L} V\left(t, x_{t}\right)\right\} \leqslant & \sum_{1 \leqslant i<j \leqslant N} \mathbb{E}\left\{(x _ { i } (t) - x _ { j } (t)) ^ { T } \left[\left(P_{1} A+A^{T} P_{1}-N w_{i j}^{(1)}\left(\Gamma_{1}^{T} P_{1}+P_{1} \Gamma_{1}\right)\right.\right.\right. \\
& \left.+\lambda \Sigma_{1}^{T} \Sigma_{1}+Q_{r+1}-\alpha \hat{X}-\beta \hat{Y}-\gamma \hat{H}-N w_{i j}^{(1,1)} \Gamma_{1}^{T} P_{1} \Gamma_{1}\right) \\
& \times\left(x_{i}(t)-x_{j}(t)\right)+\left(2\left(P_{1} D-N w_{i j}^{(2)} P_{1} \Gamma_{2}\right)\left(x_{i}(t-\tau(t))-x_{j}(t-\tau(t))\right)\right. \\
& +2\left(\alpha \check{X}+\delta_{0} P_{1} B_{1}\right)\left(f\left(x_{i}(t)\right)-f\left(x_{j}(t)\right)\right)+2\left(\beta \check{Y}+\left(1-\delta_{0} P_{1} B_{2}\right)\right)\left(g\left(x_{i}(t)\right)\right. \\
& \left.-g\left(x_{j}(t)\right)\right)+2 \gamma \check{H}\left(h\left(x_{i}(t)\right)-h\left(x_{j}(t)\right)\right)+\left(2 A^{T} S^{T}-2 N w_{i j}^{(1)} \Gamma_{1}^{T} S^{T}\right)\left(y_{i}(t)\right. \\
& \left.\left.\left.-y_{j}(t)\right)+2 P_{1} C \int_{-\infty}^{t} \kappa(t-s)\left(h\left(x_{i}(s)\right)-h\left(x_{j}(s)\right)\right) \mathrm{d} s\right)\right]+\left(x_{i}(t-\tau(t))\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.-x_{j}(t-\tau(t))\right)^{T}\left[(\lambda \Sigma _ { 2 } ^ { T } \Sigma _ { 2 } - (1 - \mu) Q _ { r + 1 } - N w _ { i j } ^ { (2 , 2) } \Gamma _ { 2 } ^ { T } P _ { 1 } \Gamma _ { 2 }) \left(x_{i}(t-\tau(t))\right.\right. \\
& \left.\left.-x_{j}(t-\tau(t))\right)+\left(2 D^{T} S^{T}-2 N w_{i j}^{(2)} \Gamma_{2}^{T} S^{T}\right)\left(y_{i}(t)-y_{j}(t)\right)\right] \\
& +\left(f\left(x_{i}(t)\right)-f\left(x_{j}(t)\right)\right)^{T}\left[\left(-2 \alpha I+\delta_{0}\left(1-\delta_{0}\right) \hbar_{2} B_{1}^{T} Z B_{1}\right)\right. \\
& \times\left(f\left(x_{i}(t)\right)-f\left(x_{j}(t)\right)\right)+2 \delta_{0} B_{1}^{T} S^{T}\left(y_{i}(t)-y_{j}(t)\right) \\
& \left.-2 \delta_{0}\left(1-\delta_{0}\right) \hbar_{2} B_{1}^{T} Z B_{2}\left(g\left(x_{i}(t)\right)-g\left(x_{j}(t)\right)\right)\right]+\left(g\left(x_{i}(t)\right)-g\left(x_{j}(t)\right)\right)^{T} \\
& \times\left[\left(-2 \beta I+\delta_{0}\left(1-\delta_{0}\right) \hbar_{2} B_{2}^{T} Z B_{2}\right)\left(g\left(x_{i}(t)\right)-g\left(x_{j}(t)\right)\right)+2\left(1-\delta_{0}\right) B_{2}^{T} S^{T}\right. \\
& \left.\times\left(y_{i}(t)-y_{j}(t)\right)\right]+\left(h\left(x_{i}(t)\right)-h\left(x_{j}(t)\right)\right)^{T}\left(-2 \gamma I+\tilde{\kappa} P_{2}\right) \\
& \times\left(h\left(x_{i}(t)\right)-h\left(x_{j}(t)\right)\right)+\left(\int_{-\infty}^{t} \kappa(t-s)\left(h\left(x_{i}(s)\right)-h\left(x_{j}(s)\right)\right) \mathrm{d} s\right)^{T} \\
& \times\left[2 C^{T} S^{T}\left(y_{i}(t)-y_{j}(t)\right)-\frac{1}{\tilde{\kappa}} P_{2} \int_{-\infty}^{t} \kappa(t-s)\left(h\left(x_{i}(s)\right)\right.\right. \\
& \left.\left.-h\left(x_{j}(s)\right)\right) \mathrm{d} s\right]+\left(y_{i}(t)-y_{j}(t)\right)^{T}\left(\hbar_{2} R-S-S^{T}\right)\left(y_{i}(t)-y_{j}(t)\right) \\
& +\left(\Upsilon_{i}(t)-\Upsilon_{j}(t)\right)^{T}\left[\left(\mathbf{Q}+\mathbf{M}+\mathbf{M}^{T}\right)\left(\Upsilon_{i}(t)-\Upsilon_{j}(t)\right)\right. \\
& \left.-2 \mathbf{M}\left(\Upsilon_{i}\left(t-\frac{1}{r} \hbar_{1}\right)-\Upsilon_{j}\left(t-\frac{1}{r} \hbar_{1}\right)\right)\right] \\
& -\left(\Upsilon_{i}\left(t-\frac{1}{r} \hbar_{1}\right)-\Upsilon_{j}\left(t-\frac{1}{r} \hbar_{1}\right)\right)^{T} \mathbf{Q}\left(\Upsilon_{i}\left(t-\frac{1}{r} \hbar_{1}\right)-\Upsilon_{j}\left(t-\frac{1}{r} \hbar_{1}\right)\right) \\
& +2\left(x_{i}\left(t-\hbar_{2}\right)-x_{j}\left(t-\hbar_{2}\right)\right)^{T} M_{r+1}\left[\left(x_{i}\left(t-\hbar_{1}\right)-x_{j}\left(t-\hbar_{1}\right)\right)\right. \\
& \left.-\left(x_{i}\left(t-\hbar_{2}\right)-x_{j}\left(t-\hbar_{2}\right)\right)\right]+\frac{1}{r} \hbar_{1}\left(\Upsilon_{i}(t)-\Upsilon_{j}(t)\right)^{T} \mathbf{M}\left(I _ { r } \otimes \left(R^{-1}\right.\right. \\
& \left.\left.+Z^{-1}\right)\right) \mathbf{M}^{T}\left(\Upsilon_{i}(t)-\Upsilon_{j}(t)\right)+\left(\hbar_{2}-\hbar_{1}\right)\left(x_{i}\left(t-\hbar_{2}\right)-x_{j}\left(t-\hbar_{2}\right)\right)^{T} \\
& \left.\times M_{r+1}\left(R^{-1}+Z^{-1}\right) M_{r+1}^{T}\left(x_{i}\left(t-\hbar_{2}\right)-x_{j}\left(t-\hbar_{2}\right)\right)\right\} \\
& =\sum_{1 \leqslant i<j \leqslant N} \xi_{i j}^{T}(t)\left(\Xi_{i j}+\tilde{M}\left(I_{8+r} \otimes\left(R^{-1}+Z^{-1}\right)\right) \tilde{M}^{T}\right) \xi_{i j}(t), \tag{A.17}
\end{align*}
$$

References

[1] Aldana M 2003 Boolean dynamics of networks with scale-free topology Physica D 185 45-66
[2] Arnold L 1998 Random Dynamical Systems (Berlin: Springer)
[3] Balasubramaniam P and Rakkiyappan R 2008 Global asymptotic stability of stochastic recurrent neural networks with multiple discrete delays and unbounded distributed delays Appl. Math. Comput. 204 680-6 (doi:10.1016/j.amc.2008.05.001)
[4] Boyd S, Ghaoui L E, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia: SIAM)
[5] Dangalchev C 2004 Generation models for scale-free networks Physica A 338 659-71
[6] Gao H, Lam J and Chen G 2006 New criteria for synchronization stability of general complex dynamical networks with coupling delays Phys. Lett. A 360 263-73
[7] Gao H and Chen T 2008 Network-based \mathcal{H}_{∞} output tracking control IEEE Trans. Auotm. Control 53 655-67
[8] Gao H, Shi P and Wang J Parameter-dependent robust stability of uncertain time-delay systems J. Comput. Appl. Math. 206 366-73
[9] He Y, Liu G P, Rees D and Wu M 2007 Stability analysis for neural networks with time-varying interval delay IEEE Trans. Neural Netw. 18 1850-4
[10] Khalil H K 1996 Nonlinear Systems (Upper Saddle River, NJ: Prentice-Hall)
[11] Khasminskii R Z 1980 Stochastic Stability of Differential Equations (Alphen aan den Rijn, Sijthoffand Noor, Khasminskiidhoff)
[12] Gu K Q, Kharitonov V L and Chen J 2003 Stability of Time-Delay Systems (Boston: Birkhauser)
[13] Langville A N and Stewart W J 2004 The Kronecker product and stochastic automata networks J. Comput. Appl. Math. 167 429-47
[14] Li C P, Sun W G and Kurths J 2006 Synchronization of complex dynamical networks with time delays Physica A 361 24-34
[15] Li Z and Chen G 2006 Global synchronization and asymptotic stability of complex dynamical networks IEEE Trans. Circuits Syst. II 53 28-33
[16] Liang J, Wang Z and Liu X 2008 Exponential synchronization of stochastic delayed discrete-time complex networks Nonlinear Dyn. 53 153-65
[17] Liang J, Wang Z, Liu Y and Liu X 2008 Global synchronization control of general delayed discrete-time networks with stochastic coupling and disturbances IEEE Trans. Syst. Man Cybern. B 38 1073-83
[18] Liu X and Chen T 2007 Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling Physica A 381 82-92
[19] Liu Y, Wang Z and Liu X 2006 Global exponential stability of generalized recurrent neural networks with discrete and distributed delays Neural Netw. 19 667-75
[20] Liu Y, Wang Z and Liu X 2008 On synchronization of coupled neural networks with discrete and unbounded distributed delays Int. J. Comput. Math. 85 1299-313
[21] Lu W and Chen T 2004 Synchronization analysis of linearly coupled networks of discrete time systems Physica D 198 148-68
[22] Lv Y, Lv W and Sun J 2008 Convergence dynamics of stochastic reaction-diffusion recurrent neural networks with continuously distributed delays Nonlinear Anal.: Real World Appl. 9 1590-606
[23] Mao X 1997 Stochastic differential equations and their applications (New York: Ellis Horwood)
[24] Mao X 2002 Exponential stability of stochastic delay interval systems with Markovian switching IEEE Trans. Autom. Control 47 1604-12
[25] Mou S, Gao H, Qiang W and Chen K 2008 New delay-dependent exponential stability for neural networks with time delay IEEE Trans. Syst. Man Cybern. B 38 571-6
[26] Mou S, Zhao Y, Gao H and Qiang W 2008 Further improvement on synchronization stability of complex networks with coupling delays Int. J. Comput. Math. 85 1255-63
[27] Slotine J E and Li W 1991 Appl. Nonlinear Control (New Jersy: Prentice-Hall)
[28] Song Q and Wang Z 2008 Stability analysis of impulsive stochastic Cohen-Grossberg neural networks with mixed time delays Phys. A: Stat. Mech. Appl. 387 3314-26
[29] Sun Y, Cao J and Wang Z 2007 Exponential synchronization of stochastic perturbed chaotic delayed neural networks Neurocomputing 70 2477-85
[30] Strogatz S 2001 Exploring complex networks Nature 410 268-76
[31] Toroczkai Z 2005 Complex networks: the challenge of interaction topology Los Alamos Sci. 29 94-109
[32] Wang X and Chen G 2003 Complex networks: small-world, scale-free and beyond IEEE Circuits Syst. Mag. 3 6-20
[33] Wang Y, Wang Z and Liang J 2008 A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances Phys. Lett. A 372 6066-73
[34] Wang Z, Liu Y and Liu X $2008 H_{\infty}$ filtering for uncertain stochastic time-delay systems with sector-bounded nonlinearities Automatica 44 1268-77
[35] Wang Z, Yang F and Liu X 2006 Robust filtering for systems with stochastic nonlinearities and deterministic uncertainties Proc. IMechE: J. Syst. Control Eng. 220 171-82
[36] Williams D 1991 Probability with Martingales (Cambridge: Cambridge University Press)
[37] Yang F, Wang Z and Ho D W C 2006 Robust mixed H_{2} / H_{∞} control for a class of nonlinear stochastic systems IEE Proc., Control Theory Appl. 153 175-84
[38] Yu W, Cao J and Lv J 2008 Global synchronization of linearly hybrid coupled networks with time-varying delay SIAM J. Appl. Dyn. Syst. 7 108-33
[39] Yue D, Tian E, Wang Z and Lam J 2008 Stabilization of systems with probabilistic interval input delays and its applications to networked control systems IEEE Trans. Syst. Man Cybern. A at press

[^0]: 4 Author to whom any correspondence should be addressed.

